

New Spools for the CO IR

- → Spools a brief overview
 - A collection of disparate components
- New spools X1, X2, & X3
 - What we are building
- Critical components
 - Corrector magnets
- → Critical components
 - → HTS Leads

Spools - a brief overview

- → 'Spool piece'
 a collection of cryogenic, magnetic, electrical, and vacuum components necessary to the accelerator and not accommodated elsewhere...
- → Components/functions include
 - Magnetic correction elements
 - Dipole, quadrupole, and sextupole correctors
 - normal and skew components in most cases
 - Current leads and bus
 - HTS and 'conventional' high current leads
 - Corrector leads
 - Tevatron and LHC-style bus

Spool Piece Overview

- → Components/functions, cont.
 - Safety leads, 'quench stoppers'
 - Beam Position Monitors
 - Quench relief valves (1Φ, 2Φ-He, N)
 - Vacuum breaks
 - Other instrumentation
 - E.g., thermometry
- → Spool pieces provide cryogenic interfaces between different 'objects'
 - Standard 'Tevatron' piping to low beta quadrupole interfaces

Spool Piece Overview

- → Spool piece components differ according to location
 - Corrector packages vary
 - Interfaces
 - Power leads and bus
- New spools include 3 basic designs X1, X2, & X3 - but 5 different variants due to different components and interfaces

New Spools

- → Three spool designations X1, X2, & X3 as viewed from corrector complement:
 - X1 V or H dipole, Sextupole, Strong Quad (slot length 1.83m)
 - X2 V & H dipoles (slot length 1.43m)
 - X3 V & H dipoles, Skew Quad located between Q2 & Q3 (slot length 1.43m)

New Spool Design

- → Design/engineering challenges
 - Slot length, slot length, slot length
 - Multiple interfaces
 - Tevatron
 - New LHC style quadrupoles
 - Note: Different bus sizes and splice lengths
 - · 'Left handed' & 'right handed' interconnects
 - HTS leads LN2 plumbing
 - Corrector lead assemblies (aka "conning towers")
 - Beam Position Monitors embedded inside the vacuum break
 - Heat load requirements
 - Design to ASME code

New Spool Table

	Magnetic Elements					Current Leads			Interfaces						
Spool	Slot Length, m	VD T. m	HD T. m	SQ T.m/m	Sx T.m/m ²	Q* T.m/m	BPM	HTS Leads	Other Leads	UpStr comp.	UpS tr intf	UpS tr bus	DnStr comp.	DnStr intf	DnStr bus
X1V	1.83	0.48			450	25	3		3x50A + SL	Quad	Tev	Tev	Dipole	Tev	Tev
X1H	1.83		0.48		450	25			3x50A	Quad	Tev	Tev	Dipole	Tev	Tev
X2L	1.43	0.48	0.48				V&H	2x10kA	2x50A + SL	Q5	Mod. Tev?	Tev, LHC	Dipole	Tev	Tev
X2R	1.43	0.48	0.48				V&H	2x10kA	2 x50A	Cold bypass	Tev	Tev	Q4	Mod. Tev?	Tev, LHC
Х3	1.43	0.48	0.48	7.5			V&H	2x10kA	3x50A + 200A	Q3	New	LHC	Q2	New	LHC
Х3	1.43	0.48	0.48	7.5			V&H	2x10kA	3x50A + 200A	Q2	New	LHC	Q3	New	LHC
X2R	1.43	0.48	0.48				V&H	2x10kA	2x50A	Dipole	Tev	Tev	Q4	Mod. Tev?	Tev, LHC
X2L	1.43	0.48	0.48				V&H	2x10kA	2x50A + SL	Q5	Mod. Tev?	Tev, LHC	Dipole	Tev	Tev
X1V	1.83	0.48			450	25			3x50A	Quad	Tev	Tev	Dipole	Tev	Tev
X1H	1.83		0.48		450	25		83	3 x 50A + SL	Quad	Tev	Tev	Dipole	Tev	Tev

New Spools - What are the Issues?

→ Engineering complexity

• Limited space, multiple components, stringent requirements on alignment, heat load, etc.

→ Magnetic Elements

- New corrector configurations
- Strong quadrupole corrector
- Dimensional constraints (see above)

→ High Current Leads

- Heat load/refrigeration limits forgo conventional Cu leads
- HTS leads required, but 10kA leads (with LN2 cooling) are not readily available

Division Conceptual Drawing - X2 Spool

An "in progress" view of spool components

T. Page

F Division Conceptual Drawing - X2 Spool

Tevatron interface end

T. Page

New Spools - Awaiting Definitions

- → Corrector / corrector leads
 - All leads will be for 50A correctors
 - Number of leads depends on corrector choice and specific spool
- **▶** BPM
- → Tunnel space at all new spool locations
 - In progress: details needed to determine clearances/interferences
- → Bus work / splice layout for interfaces
 - determines final slot length needed
 - single phase pipe size

Corrector Magnets

→ Most corrector requirements (field integrals) are the same as existing spools with the exception of the new strong quadrupole: 25T-m/m

Corrector type	Existing Correctors	C0 Requirements	units	
dipole	.460	.480	T-m	
quadrupole	7.5	7.5	T-m/m	
Strong quadrupole	none	25	T-m/m	
sextupole (up)	449	450	T-m/m ²	
sextupole (down)	346	450	T-m/m ²	
octupole	30690	none	T-m/m ³	

Corrector Magnets

- → 10 new spools incorporating 26 corrector magnets are required
- Magnet design two approaches
 - cos (nθ) -'traditional' approach is the baseline design individual coils are wound for each harmonic to be corrected
 - 'Flat Coil' array is an alternative approach which provides a multi-function magnet which can be configured to provide any of the desired harmonic

cos (nθ) Design

→ Strengths

- Conventional design
- cos(nθ) well understood
- good field quality
- LHC-like: conductor and experienced manufacturers exist
- No R&D required

Consequences

- Different coil required for each harmonic corrected
- Different coil packages for each spool type

cos (nθ) coil conceptual design

Nested dipole correctors:

Vadim Kashikhin

Summary of cos(n0) Corrector Parameters

		X2, X3 (56in)	Spool Correcto	or Components	X1 (72in) Spool Corrector Components			
Parameter	Unit	ND (n=0)	SD (n=0)	\mathbf{SQ} $(n=1)$	NQ(n=1)	NS $(n=2)$	ND (n=0)	
Coil IR	mm	40.00	48.00	40.00	40.00	48.00	40.00	
Yoke IR mm		60.00		53.00	60.00		53.00	
Strands/cable		BUS ELV	10		10			
Bare strand diameter	mm		0.30		0.30			
Cu/nonCu ratio	14.70		2.00	100	2.00			
JnonCu(5T, 4.2K)	A/mm^2	2750 2750						
Nominal strength	$T \cdot m/m^n$	0.48	0.48	7.50	25.00	450.00	0.48	
Nominal current	A	27.2	23.6	49.0	40.0	36.6	43.0	
Quench margin at nominal current in all the coils	%	54.7	58.8	38.2	40.6	42.9	39.2	
Inductance	H/m	15.16	25.03	6.48	5.42	6.24	17.01	
Stored energy at Inom	kJ/m	5.61	6.97	7.78	4.34	4.18	15.73	
Magnetic length	m	0.35	0.35	0.14	0.68	0.70	0.20	
Physical length	m	0.5	55	0.25	0.0	0.40		

cos (nθ) calculated harmonics

Nested Quadrupole / Sextupole calculated harmonics

Quadrupole:

Sextupole:

	-						
MAIN	FIELD:	0.	41682	NORMAL	REL.	MULTIP	OLES (1.D-4):
b 1:	0.	00000	b 2:	0.	00000	ь 3:	10000.00000
b 4:	0.1	00000	b 5:	0.	00000	1 Ъ6:	0.00000
b 7:	0.1	00000	Ъ8:	0.	00000	b 9⊹	-0.09100
b10:	0.1	00000	b11:	0.	00000	b12:	0.00000
b13:	0.1	00000	b14:	0.	00000	b15:	-0.17912
b16:	0.1	00000	b17:	0.	00000	b18:	0.00000

Note: 2-dim. Body fields only; ends will add harmonics (e.g.sextupole) which will need compensation in body

'Flat coil' Design

Conceptual drawing of flat coil array

Vladimir Kashikhin

Flat Coil Array Magnetic Design

- * A combined function magnetic field
 - 12 identical race-track coils distributed with an angular separation of 30°
 - Minimum number necessary to provide the required dipole, quadrupole and sextupole fields
 - Rectangular coil cross-section was chosen to simplify the winding
 - In the most general case, each coil is powered separately
- Algebraic solutions to various current/harmonic configurations

Flat coil concept

→ Coil cross section (X1 & X2 configuration)

Vladimir Kashikhin

"Current Algebra" for Flat Coil

Vladimir Kashikhin

→ Example of powering configuration - X1

$$\begin{split} I_1 &= I_{v1} \\ I_2 &= I_{v2} + I_{h3} + I_{sq} \\ I_3 &= I_{v3} + I_{h2} + I_{sq} \\ I_4 &= I_{h1} \\ I_5 &= -I_{v3} + I_{h2} - I_{sq} \\ I_6 &= -I_{v2} + I_{h3} - I_{sq} \\ I_7 &= -I_1 \\ I_8 &= -I_{v2} - I_{h3} + I_{sq} \\ I_9 &= -I_{v3} - I_{h2} + I_{sq} \\ I_{10} &= -I_4 \\ I_{11} &= I_{v3} - I_{h2} - I_{sq} \\ I_{12} &= I_{v2} - I_{h3} - I_{sq} \end{split}$$

I_{v1}, I_{v2}, I_{v3} – vertical dipole currents I_{h1}, I_{h2}, I_{h3} – horizontal dipole currents I_{sq} – skew quadrupole current

Flat Coil Array Summary

→ Advantages

- One assembly (with possible 15° rotation for sextupole) for all required corrector configurations
- More flexible operation possible
- Fewer spares needed

→ Challenges

- New approach R&D needed
- Field errors somewhat larger
- More power supplies required; current imbalances must be corrected; programmed power supply control algorithms needed
- Larger radial space needed

Flat Coil Array R&D

Vladimir Kashikhin

Development plan

- Fabricate 3 coil ("1/4" array) assembly
- Study mechanics, assembly, and limited powering regime
- Extend to full array?
- Funding and schedule limited: need decision on corrector design by Q1 FY 2005

Division Corrector Design Summary

- → Baseline cos (nθ) approach meets requirements
 - Field strength
 - Field quality
 - Conventional design most similar to LHC correctors
 - Uses less radial space
 - No significant development
- → Alternative flat coil approach
 - Meets requirements
 - Field quality needs a little examination
 - Provides significant flexibility
 - Requires a development program
 - Schedule is a major issue

HTS Leads

- → HTS Leads are required for the new 10kA low beta quadrupoles due to refrigeration limits
- → Fermilab has installed one 6kA HTS spool in the Tevatron and has three other HTS spools
- → Baseline is to use a pair of 6kA leads in parallel to provide the 10kA requirement
 - Vendor has indicated that they can re-produce existing design
 - Leads are well understood from extensive R&D program at Fermilab
 - However this doubles the number of leads to be accommodated in the system

HTS Leads

- → Cost and schedule prohibit a development program for new 10kA HTS leads
- → Alternative approach use existing lead design and 'over cool' to reach 10kA
 - During R&D phase >7kA reached during testing
 - Limiting element may be conventional section (Cu)
 - It might be possible to modify slightly the Cu section without affecting the HTS section (and keep the cost finite...) or they might work in over cooled state
- → Test of existing H-spool to explore current limits (in preparation, S. Feher)

Technical Division 6kA modified H-Spool Test

→ TSHH-296 6kA HTS lead spool to be tested in MTF

HTS Leads Summary

- + HTS leads required by refrigeration constraints
- → Baseline design uses pairs of 6kA leads to meet the 10kA requirement
- → Test in preparation to explore higher current operation of 6kA leads with additional cooling
- → Only a two vendors exist who can meet our requirements including cost and schedule: no significant R&D is possible

A Possible Procurement Plan

- Correction Coils (baseline approach)
 - Two vendors for cost control, security
 - Cold test (quench) capability
- → HTS Leads
 - Single vendor
- → Final Assembly
 - Single vendor
- → Fermilab
 - Intermediate component testing
 - Magnetic measurements
 - HTS leads cold tests
 - Final alignment, harmonics, and cold testing of completed spools

Summary

- Overall design is proceeding well
 - Concepts are developed
 - Most components are based on existing designs
 - Details to be decided in a timely manner
 - Cryogenic interfaces
 - Bus design
- Critical component decisions to be resolved:
 - 10kA HTS leads 2 pair baseline or 1 pair 'over cooled'
 - Number of qualified vendors an issue
 - Corrector magnets \cos ($n\theta$) baseline or flat coil array with some development
- Number of qualified final assembly vendors an issue
- → Schedule will be ultimate driver little 'float' with funding not beginning until FY2005
 - Little or no time for (R&)D